Full metadata
Title
Laser-Activated Nanomaterials for Tissue Repair
Description
Tissue approximation and repair have been performed with sutures and staples for centuries, but these means are inherently traumatic. Tissue repair using laser-responsive nanomaterials can lead to rapid tissue sealing and repair and is an attractive alternative to existing clinical methods. Laser tissue welding is a sutureless technique for sealing incised or wounded tissue, where chromophores convert laser light to heat to induce in tissue sealing. Introducing chromophores that absorb near-infrared light creates differential laser absorption and allows for laser wavelengths that minimizes tissue damage.
In this work, plasmonic nanocomposites have been synthesized and used in laser tissue welding for ruptured porcine intestine ex vivo and incised murine skin in vivo. These laser-responsive nanocomposites improved tissue strength and healing, respectively. Additionally, a spatiotemporal model has been developed for laser tissue welding of porcine and mouse cadaver intestine sections using near-infrared laser irradiation. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser welding. Finally, in a model of surgical site infection, laser-responsive nanomaterials were shown to be efficacious in inhibiting bacterial growth. By incorporating an anti-microbial functionality to laser-responsive nanocomposites, these materials will serve as a treatment modality in sealing tissue, healing tissue, and protecting tissue in surgery.
In this work, plasmonic nanocomposites have been synthesized and used in laser tissue welding for ruptured porcine intestine ex vivo and incised murine skin in vivo. These laser-responsive nanocomposites improved tissue strength and healing, respectively. Additionally, a spatiotemporal model has been developed for laser tissue welding of porcine and mouse cadaver intestine sections using near-infrared laser irradiation. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser welding. Finally, in a model of surgical site infection, laser-responsive nanomaterials were shown to be efficacious in inhibiting bacterial growth. By incorporating an anti-microbial functionality to laser-responsive nanocomposites, these materials will serve as a treatment modality in sealing tissue, healing tissue, and protecting tissue in surgery.
Date Created
2019
Contributors
- Urie, Russell Ricks (Author)
- Rege, Kaushal (Thesis advisor)
- Acharya, Abhinav (Committee member)
- DeNardo, Dale (Committee member)
- Holloway, Julianne (Committee member)
- Thomas, Marylaura (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
187 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55539
Level of coding
minimal
Note
Doctoral Dissertation Chemical Engineering 2019
System Created
- 2020-01-14 09:15:05
System Modified
- 2021-08-26 09:47:01
- 3 years 4 months ago
Additional Formats