Description
This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then

This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of protein requires extremely pure homogenous solution of the protein that was achieved using numerous protein separation techniques which were experimented with. Crystallization conditions, protein separation methods and protein characterization methods were all investigated along with the protein-nanoparticle interaction studies. The main protein of study here is GroEL and the inorganic nanoparticle used is platinum. Some studies on MBP producing gold nanoparticles from an ionic gold precursor were also conducted to get a better perspective on nanoparticle formation. Protein purification methods, crystallization conditions, Car-9 tag testing and protein characterization methods were all investigated along with the focus of this work. It was concluded that more Car9 studies need to be carried out before being used as in the form of a loop in the protein. The nanoparticle experiments were successful and platinum nanoparticles were successfully synthesized using GroEL. The direction of further research in protein-nanoparticle studies are outlined towards the end of the thesis.
Downloads
PDF (1.1 MB)
Download count: 2

Details

Title
  • Preliminary Studies on Protein-Aided Nanoparticle Interactions
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Chemical Engineering 2019

    Machine-readable links