Full metadata
Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.
In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.
- Hoehne, Christopher Glenn (Author)
- Chester, Mikhail V (Thesis advisor)
- Hondula, David M. (Committee member)
- Sailor, David (Committee member)
- Pendyala, Ram M. (Committee member)
- Arizona State University (Publisher)
- 2019-11-06 03:38:11
- 2021-09-20 07:41:17
- 3 years 3 months ago