Full metadata
Title
Representation, Exploration, and Recommendation of Music Playlists
Description
Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. Similar concepts can be applied to music to learn fixed length representations for playlists and the learned representations can then be used for downstream tasks such as playlist comparison and recommendation.
In this thesis, the problem of learning a fixed-length representation is formulated in an unsupervised manner, using Neural Machine Translation (NMT), where playlists are interpreted as sentences and songs as words. This approach is compared with other encoding architectures and evaluated using the suite of tasks commonly used for evaluating sentence embeddings, along with a few additional tasks pertaining to music. The aim of the evaluation is to study the traits captured by the playlist embeddings such that these can be leveraged for music recommendation purposes. This work lays down the foundation for analyzing music playlists and learning the patterns that exist in the playlists in an end-to-end manner. This thesis finally concludes with a discussion on the future direction for this research and its potential impact in the domain of Music Information Retrieval.
In this thesis, the problem of learning a fixed-length representation is formulated in an unsupervised manner, using Neural Machine Translation (NMT), where playlists are interpreted as sentences and songs as words. This approach is compared with other encoding architectures and evaluated using the suite of tasks commonly used for evaluating sentence embeddings, along with a few additional tasks pertaining to music. The aim of the evaluation is to study the traits captured by the playlist embeddings such that these can be leveraged for music recommendation purposes. This work lays down the foundation for analyzing music playlists and learning the patterns that exist in the playlists in an end-to-end manner. This thesis finally concludes with a discussion on the future direction for this research and its potential impact in the domain of Music Information Retrieval.
Date Created
2019
Contributors
- Papreja, Piyush (Author)
- Panchanathan, Sethuraman (Thesis advisor)
- Demakethepalli Venkateswara, Hemanth Kumar (Committee member)
- Amor, Heni Ben (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
62 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.54843
Level of coding
minimal
Note
Masters Thesis Computer Science 2019
System Created
- 2019-11-06 03:37:57
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats