Full metadata
Title
Radiation Damage and Helium Diffusion in Mineral Chronometers
Description
A mineral’s helium content reflects a balance between two competing processes: accumulation by radioactive decay and temperature-dependent diffusive loss. (U-Th)/He dating of zircon and other uranium and thorium-bearing minerals provides insight into the temperature histories of rocks at or near Earth’s surface that informs geoscientists’ understanding of tectonic and climate-driven exhumation, magmatic activity, and other thermal events. The crystal structure and chemistry of minerals affect helium diffusion kinetics, recorded closure temperatures, and interpretations of (U-Th)/He datasets. I used empirical and experimental methods to investigate helium systematics in two minerals chronometers: zircon and xenotime.
The same radioactivity that makes zircon a valuable chronometer damages its crystal structure over time and changes zircon helium kinetics. I used a zircon, titanite, and apatite (U-Th)/He dataset combined with previously published data and a new thermal model to place empirical constraints on the closure temperature for helium in a suite of variably damaged zircon crystals from the McClure Mountain syenite of Colorado. Results of this study suggest that the widely-used zircon damage accumulation and annealing model (ZRDAAM) does not accurately predict helium closure temperatures for a majority of the dated zircons. Detailed Raman maps of Proterozoic zircon crystals from the Lyon Mountain Granite of New York document complex radiation damage zoning. Models based on these results suggest that most ancient zircons are likely to exhibit intracrystalline variations in helium diffusivity due to radiation damage zoning, which may, in part, explain discrepancies between my empirical findings and ZRDAAM.
Zircon crystallography suggests that helium diffusion should be fastest along the crystallographic c-axis. I used laser depth profiling to show that diffusion is more strongly anisotropic than previously recognized. These findings imply that crystal morphology affects the closure temperature for helium in crystalline zircon. Diffusivity and the magnitude of diffusive anisotropy decrease with low doses of radiation damage.
Xenotime would make a promising (U-Th)/He thermochronometer if its helium kinetics were better known. I performed classic step-wise degassing experiments to characterize helium diffusion in xenotime FPX-1. Results suggest that this xenotime sample is sensitive to exceptionally low temperatures (∼50 °C) and produces consistent (U-Th)/He dates.
The same radioactivity that makes zircon a valuable chronometer damages its crystal structure over time and changes zircon helium kinetics. I used a zircon, titanite, and apatite (U-Th)/He dataset combined with previously published data and a new thermal model to place empirical constraints on the closure temperature for helium in a suite of variably damaged zircon crystals from the McClure Mountain syenite of Colorado. Results of this study suggest that the widely-used zircon damage accumulation and annealing model (ZRDAAM) does not accurately predict helium closure temperatures for a majority of the dated zircons. Detailed Raman maps of Proterozoic zircon crystals from the Lyon Mountain Granite of New York document complex radiation damage zoning. Models based on these results suggest that most ancient zircons are likely to exhibit intracrystalline variations in helium diffusivity due to radiation damage zoning, which may, in part, explain discrepancies between my empirical findings and ZRDAAM.
Zircon crystallography suggests that helium diffusion should be fastest along the crystallographic c-axis. I used laser depth profiling to show that diffusion is more strongly anisotropic than previously recognized. These findings imply that crystal morphology affects the closure temperature for helium in crystalline zircon. Diffusivity and the magnitude of diffusive anisotropy decrease with low doses of radiation damage.
Xenotime would make a promising (U-Th)/He thermochronometer if its helium kinetics were better known. I performed classic step-wise degassing experiments to characterize helium diffusion in xenotime FPX-1. Results suggest that this xenotime sample is sensitive to exceptionally low temperatures (∼50 °C) and produces consistent (U-Th)/He dates.
Date Created
2019
Contributors
- Anderson, Alyssa Jordan (Author)
- Hodges, Kip (Thesis advisor)
- van Soest, Matthijs (Committee member)
- Till, Christy (Committee member)
- Shim, Sang-Heon (Committee member)
- Sharp, Tom (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
222 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.54822
Level of coding
minimal
Note
Doctoral Dissertation Geological Sciences 2019
System Created
- 2019-11-06 03:32:08
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats