Full metadata
Title
Design and fabrication of fabric reinforced textile actuators for soft robotic graspers
Description
Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes.
Date Created
2019
Contributors
- Lopez Arellano, Francisco Javier (Author)
- Santello, Marco (Thesis advisor)
- Zhang, Wenlong (Thesis advisor)
- Buneo, Christopher (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
56 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53959
Statement of Responsibility
by Francisco Javier Lopez Arellano
Description Source
Viewed on December 26th, 2019
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2019
bibliography
Includes bibliographical references (pages 48-50)
Field of study: Biomedical Engineering
System Created
- 2019-05-15 12:39:30
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats