Full metadata
Title
Modeling, Control and Design of a Quadrotor Platform for Indoor Environments
Description
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.
One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:
(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,
(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),
(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors
(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,
(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),
(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),
(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),
(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.
The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.
The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:
(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,
(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),
(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors
(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,
(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),
(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),
(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),
(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.
The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.
The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
Date Created
2018
Contributors
- Lu, Shi (Author)
- Rodriguez, Armando A. (Thesis advisor)
- Tsakalis, Konstantinos (Committee member)
- Si, Jennie (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
216 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.51763
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2018
System Created
- 2019-02-01 07:05:26
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats