Full metadata
Title
Theoretical investigation of transport across superconductor/ferromagnetic interfaces
Description
Attaining a sufficiently large critical current density (Jc) in magnetic-barrier Josephson junctions has been one of the greatest challenges to the development of dense low-power superconductor memories. Many experimentalists have used various combinations of superconductor (S) and ferromagnetic (F) materials, with limited success towards the goal of attaining a useful Jc. This trial-and-error process is expensive and time consuming. An improvement in the fundamental understanding of transport through the ferromagnetic layers and across the superconductor-ferromagnetic interface could potentially give fast, accurate predictions of the transport properties in devices and help guide the experimental studies.
In this thesis, parameters calculated using density functional methods are used to model transport across Nb/0.8 nm Fe/Nb/Nb and Nb/3.8 nm Ni /Nb/Nb Josephson junctions. The model simulates the following transport processes using realistic parameters from density functional theory within the generalized gradient approximation: (a) For the first electron of the Cooper pair in the superconductor to cross the interface- conservation of energy and crystal momentum parallel to the interface (kll). (b) For the second electron to be transmitted coherently- satisfying the Andreev reflection interfacial boundary conditions and crossing within a coherence time, (c) For transmission of the coherent pair through the ferromagnetic layer- the influence of the exchange field on the electrons’ wavefunction and (d) For transport through the bulk and across the interfaces- the role of pair-breaking from spin-flip scattering of the electrons. Our model shows the utility of using realistic electronic-structure band properties of the materials used, rather the mean-field exchange energy and empirical bulk and interfacial material parameters used by earlier workers. [Kontos et al. Phys. Rev Lett, 93(13), 137001. (2004); Demler et al. Phys. Rev. B, 55(22), 15174. (1997)].
The critical current densities obtained from out model for Nb/0.8 nm Fe/Nb is 104 A/cm2 and for Nb/3.8 nm Ni/Nb is 7.1*104 A/cm2. These values fall very close to those observed experimentally- i.e. for Nb/0.8 nm Fe/Nb is 8*103 A/cm2 [Robinson et al" Phys. Rev. B 76, no. 9, 094522. (2007)] and for Nb/3.8 nm of Ni/Nb is 3*104 A/cm2 [Blum et al Physical review letters 89, no. 18, 187004. (2002). This indicates that our approach could potentially be useful in optimizing the properties of ferromagnetic-barrier structures for use in low-energy superconducting memories.
In this thesis, parameters calculated using density functional methods are used to model transport across Nb/0.8 nm Fe/Nb/Nb and Nb/3.8 nm Ni /Nb/Nb Josephson junctions. The model simulates the following transport processes using realistic parameters from density functional theory within the generalized gradient approximation: (a) For the first electron of the Cooper pair in the superconductor to cross the interface- conservation of energy and crystal momentum parallel to the interface (kll). (b) For the second electron to be transmitted coherently- satisfying the Andreev reflection interfacial boundary conditions and crossing within a coherence time, (c) For transmission of the coherent pair through the ferromagnetic layer- the influence of the exchange field on the electrons’ wavefunction and (d) For transport through the bulk and across the interfaces- the role of pair-breaking from spin-flip scattering of the electrons. Our model shows the utility of using realistic electronic-structure band properties of the materials used, rather the mean-field exchange energy and empirical bulk and interfacial material parameters used by earlier workers. [Kontos et al. Phys. Rev Lett, 93(13), 137001. (2004); Demler et al. Phys. Rev. B, 55(22), 15174. (1997)].
The critical current densities obtained from out model for Nb/0.8 nm Fe/Nb is 104 A/cm2 and for Nb/3.8 nm Ni/Nb is 7.1*104 A/cm2. These values fall very close to those observed experimentally- i.e. for Nb/0.8 nm Fe/Nb is 8*103 A/cm2 [Robinson et al" Phys. Rev. B 76, no. 9, 094522. (2007)] and for Nb/3.8 nm of Ni/Nb is 3*104 A/cm2 [Blum et al Physical review letters 89, no. 18, 187004. (2002). This indicates that our approach could potentially be useful in optimizing the properties of ferromagnetic-barrier structures for use in low-energy superconducting memories.
Date Created
2018
Contributors
- Kalyana Raman, Dheepak Surya (Author)
- Newman, Nathan (Thesis advisor)
- Muhich, Christopher L (Committee member)
- Ferry, David K. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 45 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.51668
Statement of Responsibility
by Dheepak Surya Kalyana Raman
Description Source
Viewed on July 16, 2020
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2018
bibliography
Includes bibliographical references (pages 43-45)
Field of study: Materials science and engineering
System Created
- 2019-02-01 07:03:01
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats