Full metadata
Title
Cyber Attacks Detection and Mitigation in SDN Environments
Description
Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies
and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation
are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand
what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,
attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.
Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation
are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand
what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,
attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.
Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
Date Created
2018
Contributors
- Alshamrani, Adel (Author)
- Huang, Dijiang (Thesis advisor)
- Doupe, Adam (Committee member)
- Ahn, Gail-Joon (Committee member)
- Davulcu, Hasan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
217 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.51574
Level of coding
minimal
Note
Doctoral Dissertation Computer Science 2018
System Created
- 2019-02-01 07:00:41
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats