Full metadata
Title
Interface electronic state characterization of dielectrics on diamond and C-BN
Description
Diamond and cubic boron nitride (c-BN) are ultra wide band gap semiconductors (Eg>3.4 eV) and share similar properties in various aspects, including being isoelectronic, a 1% lattice mismatch, large band gap, high thermal conductivity. Particularly, the negative electron affinity (NEA) of diamond and c-BN is an unusual property that has led to effects such as p-type surface conductivity, low temperature thermionic emission, and photon enhanced thermionic emission. In this dissertation, the interface chemistry and electronic structure of dielectrics on diamond and c-BN are investigated with X-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The first study established that the surface conductive states could be established for thin Al2O3 on diamond using a post deposition H-plasma process. At each step of the atomic layer deposition (ALD) and plasma processing, the band alignment was characterized by in situ photoemission and related to interface charges. An interface layer between the diamond and dielectric layer was proposed to explain the surface conductivity. The second study further investigated the improvement of the hole mobility of surface conductive diamond. A thin layer of Al2O3 was employed as an interfacial layer between surface conductive hydrogen-terminated (H-terminated) diamond and MoO3 to increase the distance between the hole accumulation layer in diamond and negatively charged states in acceptor layer. With an interfacial layer, the ionic scattering, which was considered to limit the hole mobility, was reduced. By combining two oxides (Al2O3 and MoO3), the hole mobility and concentration were modulated by altering the thickness of the Al2O3 interfacial layer. The third study focused on the electronic structure of vanadium-oxide-terminated c-BN surfaces. The vanadium-oxide-termination was formed on c-BN by combining vanadium deposition using molecular beam deposition (MBD) and oxygen plasma treatment. After thermal annealing, a thermally stable NEA was achieved on c-BN. A model was proposed based on the deduced interface charge distribution to explain the establishment of an NEA.
Date Created
2018
Contributors
- Yang, Yu (Author)
- Nemanich, Robert J (Thesis advisor)
- McCartney, Martha (Committee member)
- Ponce, Fernando (Committee member)
- Qing, Quan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xvii, 117 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.49288
Statement of Responsibility
by Yu Yang
Description Source
Retrieved on July 9, 2018
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2018
bibliography
Includes bibliographical references
Field of study: Physics
System Created
- 2018-06-01 08:09:16
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats