Full metadata
Title
Comprehensive Assessment of Nanoparticle Delivery after Experimental Traumatic Brain Injury
Description
Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation and degradation. One potential strategy to address the current therapeutic limitations is to employ nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared to standard drug administration. However, NP application for TBI is challenging not only due to the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous (focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity following TBI and subsequent NP delivery has not been previously investigated. The overarching hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable delivery of systemically injected NPs to the injury penumbra. This study specifically explored the feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse TBI. Key findings from these studies include the following. (1) After focal TBI, NPs ranging from 20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice compared to the males at 24h and 3d following focal brain injury. Taken together, these results demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by exploiting the compromised BBB. Results also reveal a potential sex dependent component of BBB disruption leading to altered NP accumulation. The applications of this research are far-reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic outcome.
Date Created
2018
Contributors
- Bharadwaj, Vimala Nagabhushana (Author)
- Stabenfeldt, Sarah E (Thesis advisor)
- Kodibagkar, Vikram D (Thesis advisor)
- Kleim, Jeffrey (Committee member)
- Tian, Yanqing (Committee member)
- Lifshitz, Jonathan (Committee member)
- Anderson, Trent R (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
153 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.49211
Level of coding
minimal
Note
Doctoral Dissertation Biomedical Engineering 2018
System Created
- 2018-06-01 08:05:04
System Modified
- 2021-08-26 09:47:01
- 3 years 4 months ago
Additional Formats