Full metadata
Title
Deep Active Learning Explored Across Diverse Label Spaces
Description
Deep learning architectures have been widely explored in computer vision and have
depicted commendable performance in a variety of applications. A fundamental challenge
in training deep networks is the requirement of large amounts of labeled training
data. While gathering large quantities of unlabeled data is cheap and easy, annotating
the data is an expensive process in terms of time, labor and human expertise.
Thus, developing algorithms that minimize the human effort in training deep models
is of immense practical importance. Active learning algorithms automatically identify
salient and exemplar samples from large amounts of unlabeled data and can augment
maximal information to supervised learning models, thereby reducing the human annotation
effort in training machine learning models. The goal of this dissertation is to
fuse ideas from deep learning and active learning and design novel deep active learning
algorithms. The proposed learning methodologies explore diverse label spaces to
solve different computer vision applications. Three major contributions have emerged
from this work; (i) a deep active framework for multi-class image classication, (ii)
a deep active model with and without label correlation for multi-label image classi-
cation and (iii) a deep active paradigm for regression. Extensive empirical studies
on a variety of multi-class, multi-label and regression vision datasets corroborate the
potential of the proposed methods for real-world applications. Additional contributions
include: (i) a multimodal emotion database consisting of recordings of facial
expressions, body gestures, vocal expressions and physiological signals of actors enacting
various emotions, (ii) four multimodal deep belief network models and (iii)
an in-depth analysis of the effect of transfer of multimodal emotion features between
source and target networks on classification accuracy and training time. These related
contributions help comprehend the challenges involved in training deep learning
models and motivate the main goal of this dissertation.
depicted commendable performance in a variety of applications. A fundamental challenge
in training deep networks is the requirement of large amounts of labeled training
data. While gathering large quantities of unlabeled data is cheap and easy, annotating
the data is an expensive process in terms of time, labor and human expertise.
Thus, developing algorithms that minimize the human effort in training deep models
is of immense practical importance. Active learning algorithms automatically identify
salient and exemplar samples from large amounts of unlabeled data and can augment
maximal information to supervised learning models, thereby reducing the human annotation
effort in training machine learning models. The goal of this dissertation is to
fuse ideas from deep learning and active learning and design novel deep active learning
algorithms. The proposed learning methodologies explore diverse label spaces to
solve different computer vision applications. Three major contributions have emerged
from this work; (i) a deep active framework for multi-class image classication, (ii)
a deep active model with and without label correlation for multi-label image classi-
cation and (iii) a deep active paradigm for regression. Extensive empirical studies
on a variety of multi-class, multi-label and regression vision datasets corroborate the
potential of the proposed methods for real-world applications. Additional contributions
include: (i) a multimodal emotion database consisting of recordings of facial
expressions, body gestures, vocal expressions and physiological signals of actors enacting
various emotions, (ii) four multimodal deep belief network models and (iii)
an in-depth analysis of the effect of transfer of multimodal emotion features between
source and target networks on classification accuracy and training time. These related
contributions help comprehend the challenges involved in training deep learning
models and motivate the main goal of this dissertation.
Date Created
2018
Contributors
- Ranganathan, Hiranmayi (Author)
- Sethuraman, Panchanathan (Thesis advisor)
- Papandreou-Suppappola, Antonia (Committee member)
- Li, Baoxin (Committee member)
- Chakraborty, Shayok (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
247 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.49076
Level of coding
minimal
Note
Doctoral Dissertation Electrical Engineering 2018
System Created
- 2018-06-01 08:01:33
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats