Description
Drosophila CORL (dCORL) is a central nervous system (CNS)-specific gene that is hypothesized to function in Transforming Growth Factor β signaling. It is part of the Corl multigene family that includes mouse and human homologs. dCORL is necessary for Ecdysone

Drosophila CORL (dCORL) is a central nervous system (CNS)-specific gene that is hypothesized to function in Transforming Growth Factor β signaling. It is part of the Corl multigene family that includes mouse and human homologs. dCORL is necessary for Ecdysone Receptor isoform B1 (EcR-B1) protein expression in the mushroom body, a brain region responsible for learning and memory. Beyond this, dCORL function is unknown. As dCORL expression is restricted to the CNS, co-expression experiments were performed to identify dCORL-specific neurons. In these experiments, EcR-B1 protein expression was compared to dCORL mRNA expression revealing that they are not expressed in the same cells. Therefore, EcR-B1 is regulated non-autonomously by dCORL. Co-expression analyses were also conducted utilizing dCORL reporters. For example, the reporter AH-lacZ was co-stained with two pars intercerebralis (PI) markers: Drifter (Dfr; a transcription factor found in the nucleus) and Drosophila insulin-like peptide 2 (dILP2; a peptide present in the neurosecretory cells of the pars intercerebralis [PI].) The results showed that there was complete AH-lacZ co-expression with dILP2 in third instar larval and adult brains. Previous work in our lab on dCORL mutant (Df(4)dCORL) adult longevity showed a connection between mating and increased lifespan; mated mutant females had doubled lifespans compared to virgins. Given the published relationship between insulin and longevity, I hypothesized an association between insulin, dCORL, and mating. Df(4)dCORL mutants were used to analyze the effects of dCORL loss-of-function on dILP2. There was a reduction in the number of dILP2-expressing cells in mutants compared to wild type. In wild type larval and adult PI’s, most dILP2-positive neurons also expressed Dfr. Whereas in adult virgin mutants, all dILP2 neurons were Dfr-positive. Both 3-day and 15-day old mated females showed increased dILP2 cell numbers compared to virgin mutants. In these sets of dILP2 cells only a subset expressed Dfr as in wild type. The mutant phenotypes of mated flies showed partial rescue compared to virgins. This led to the conclusion there were associations between mating, longevity, and insulin signaling through dCORL. Homology between Drosophila and mammalian Corl proteins imply these connections may be seen in mammals.
Reuse Permissions
  • Downloads
    PDF (3.3 MB)

    Details

    Title
    • Drosophila CORL phenotypes connect mating, longevity, and insulin signaling
    Contributors
    Date Created
    2018
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2018
    • bibliography
      Includes bibliographical references (pages 53-60)
    • Field of study: Biology

    Citation and reuse

    Statement of Responsibility

    by Nancy Lan Tran

    Machine-readable links