Full metadata
Title
Computational approaches to simulation and analysis of large conformational transitions in proteins
Description
In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and cycle among many conformational states—convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible.
Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.
Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)—an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project—developing a hybrid atomistic-continuum method—is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.
Date Created
2017
Contributors
- Seyler, Sean L (Author)
- Beckstein, Oliver (Thesis advisor)
- Chamberlin, Ralph (Committee member)
- Matyushov, Dmitry (Committee member)
- Thorpe, Michael F (Committee member)
- Vaiana, Sara (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 232 pages : illustrations (chiefly color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.46316
Statement of Responsibility
by Sean L. Seyler
Description Source
Retrieved on June 7, 2018
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2017
bibliography
Includes bibliographical references (pages 153-194)
Field of study: Physics
System Created
- 2018-02-01 07:10:19
System Modified
- 2021-08-26 09:47:01
- 3 years 4 months ago
Additional Formats