Full metadata
Title
Customer Benefit Analysis and Experimental Study of Residential Rooftop PV and Energy Storage Systems
Description
The government support towards green energy sources for the better future of the planet has changed the perspective of the people towards the usage of green energy. Among renewables, solar is one of the important and easily accessible resources to convert energy from the sun directly into electricity and this system has gained fame since the past three decades.
SRP has set up a 6.36 kW PV and 19.4 kWh battery system on the rooftop of Engineering Research Center (ERC). The system is grid-connected and ASU (Arizona State University) has developed two load banks with a minimum step of 72 watts to simulate different residential load profiles and perform other research objectives.
A customer benefit analysis is performed for residential customers with photovoltaic (PV) systems and energy storage particularly in the state of Arizona. By optimizing the use of energy storage device, the algorithm aims at maximizing the profit and minimizing utility bills in accordance with the demand charge algorithm of the local utility. This part of the research has been published as a conference paper in IEEE PES General Meeting 2017.
A transient test is performed on the PV-battery during the on-grid mode and the off-grid mode to study the system behaviour during the transients. An algorithm is developed by the ASU research team to minimize the demand charge tariff for the residential customers. A statistical analysis is performed on the data collected from the system using a MATLAB algorithm.
SRP has set up a 6.36 kW PV and 19.4 kWh battery system on the rooftop of Engineering Research Center (ERC). The system is grid-connected and ASU (Arizona State University) has developed two load banks with a minimum step of 72 watts to simulate different residential load profiles and perform other research objectives.
A customer benefit analysis is performed for residential customers with photovoltaic (PV) systems and energy storage particularly in the state of Arizona. By optimizing the use of energy storage device, the algorithm aims at maximizing the profit and minimizing utility bills in accordance with the demand charge algorithm of the local utility. This part of the research has been published as a conference paper in IEEE PES General Meeting 2017.
A transient test is performed on the PV-battery during the on-grid mode and the off-grid mode to study the system behaviour during the transients. An algorithm is developed by the ASU research team to minimize the demand charge tariff for the residential customers. A statistical analysis is performed on the data collected from the system using a MATLAB algorithm.
Date Created
2017
Contributors
- Etha, Pavan (Author)
- Karady, George G. (Thesis advisor)
- Heydt, Gerald (Committee member)
- Ayyanar, Raja (Committee member)
- Grant, Smedley (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
145 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.46287
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2017
System Created
- 2018-02-01 07:05:35
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats