Full metadata
Title
Low-power Physical-layer Design for LTE Based Very NarrowBand IoT (VNB - IoT) Communication
Description
With the new age Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this thesis, a wireless system is proposed which is targeted towards very low power, delay insensitive IoT applications with low throughput requirements. The low cost receivers for such devices will have very low complexity, consume very less power and hence will run for several years.
Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of Release 13, another standard called narrowband IoT (NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low throughput requirements. Working along similar lines, this thesis proposes yet another LTE based solution called very narrowband IoT (VNB-IoT), which further reduces the complexity and power consumption of the user equipment (UE) while maintaining the base station (BS) architecture as defined in NB-IoT.
In the downlink operation, the transmitter of the proposed system uses the NB-IoT resource block with each subcarrier modulated with data symbols intended for a different user. On the receiver side, each UE locks to a particular subcarrier frequency instead of the entire resource block and operates as a single carrier receiver. On the uplink, the system uses a single-tone transmission as specified in the NB-IoT standard.
Performance of the proposed system is analyzed in an additive white Gaussian noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI). Relationship between the overall filter bandwidth and ICI is established towards the end.
Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of Release 13, another standard called narrowband IoT (NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low throughput requirements. Working along similar lines, this thesis proposes yet another LTE based solution called very narrowband IoT (VNB-IoT), which further reduces the complexity and power consumption of the user equipment (UE) while maintaining the base station (BS) architecture as defined in NB-IoT.
In the downlink operation, the transmitter of the proposed system uses the NB-IoT resource block with each subcarrier modulated with data symbols intended for a different user. On the receiver side, each UE locks to a particular subcarrier frequency instead of the entire resource block and operates as a single carrier receiver. On the uplink, the system uses a single-tone transmission as specified in the NB-IoT standard.
Performance of the proposed system is analyzed in an additive white Gaussian noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI). Relationship between the overall filter bandwidth and ICI is established towards the end.
Date Created
2017
Contributors
- Sharma, Prashant (Author)
- Bliss, Daniel (Thesis advisor)
- Chakrabarti, Chaitali (Committee member)
- McGiffen, Thomas (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
55 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.46196
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2017
System Created
- 2018-02-01 07:01:53
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats