Full metadata
Title
Evaluating the impact of land cover composition on water, energy, and carbon fluxes in urban and rangeland ecosystems of the southwestern United States
Description
Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and management. This thesis investigates how areas undergoing land cover conversions in a semiarid region, through urbanization or rangeland management, influences energy, water and carbon fluxes. Specifically, the following scientific questions are addressed: (1) what is the impact of different urban land cover types in Phoenix, AZ on energy and water fluxes?, (2) how does the land cover heterogeneity influence energy, water, and carbon fluxes in a semiarid rangeland undergoing woody plant encroachment?, and (3) what is the impact of brush management on energy, water, and carbon fluxes?
The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
Date Created
2017
Contributors
- Templeton, Nicole Pierini (Author)
- Vivoni, Enrique R (Thesis advisor)
- Archer, Steven R (Committee member)
- Mascaro, Giuseppe (Committee member)
- Scott, Russell L. (Committee member)
- Wang, Zhi-Hua (Committee member)
- Arizona State University (Publisher)
Topical Subject
- Environmental engineering
- Land Use Planning
- Range management
- Brush Management
- eddy covariance
- evapotranspiration
- land cover
- Net Ecosystem Exchange
- Rangeland Management
- Land cover--Environmental aspects--Southwestern States.
- land cover
- Urban ecology (Biology)--Southwestern States.
- Urban ecology (Biology)
- Range ecology--Southwestern States.
- Range ecology
Resource Type
Extent
xvii, 222 pages : illustrations (some color), maps (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.45023
Statement of Responsibility
by Nicole Pierini Templeton
Description Source
Viewed on December 18, 2017
Level of coding
full
Note
Vita
thesis
Partial requirement for: Ph.D., Arizona State University, 2017
bibliography
Includes bibliographical references (pages 119-130)
Field of study: Civil, environmental and sustainable engineering
System Created
- 2017-08-01 08:01:53
System Modified
- 2021-08-26 09:47:01
- 3 years 4 months ago
Additional Formats