Full metadata
Title
Pultruded Textile Reinforced Concrete Structural Sections
Description
Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These advantages introduce textile reinforced concrete (TRC) composites as a potential surrogate for wood, light gauge steel, and other common structural materials into an ever changing and broadening market of industrial grade structural sections. With the potential modifications of textile geometry, textile type, section geometry, and connection type, the options presented by TRC sections seem nearly boundless. Automated pultrusion presents the ability to manufacture many different TRC composite types in at a quickened rate opening up a new field of study of structural materials.
The objective of this study centered on two studies including the development of an automated pultrusion system for the manufacturing of TRC composites and ultimately the assessment of composites created with the pultrusion technique and their viability as a relevant structural construction material. Upon planning, fabrication, and continued use of an automated pultrusion system in Arizona State University’s Structures Lab, an initial, comparative study of polypropylene microfiber composites was conducted to assess fiber reinforced concrete composites, manufactured with Filament Winding Technique, and textile reinforced concrete composites, manufactured with Automated Pultrusion Technique, in tensile and flexural mechanical response at similar reinforcement dosages. A secondary study was then conducted to measure the mechanical behavior of carbon, polypropylene, and alkali-resistant glass TRC composites and explore the response of full scale TRC structural shapes, including angle and channel sections. Finally, a study was conducted on the connection type for large scale TRC composite structural sections in tension and compression testing.
The objective of this study centered on two studies including the development of an automated pultrusion system for the manufacturing of TRC composites and ultimately the assessment of composites created with the pultrusion technique and their viability as a relevant structural construction material. Upon planning, fabrication, and continued use of an automated pultrusion system in Arizona State University’s Structures Lab, an initial, comparative study of polypropylene microfiber composites was conducted to assess fiber reinforced concrete composites, manufactured with Filament Winding Technique, and textile reinforced concrete composites, manufactured with Automated Pultrusion Technique, in tensile and flexural mechanical response at similar reinforcement dosages. A secondary study was then conducted to measure the mechanical behavior of carbon, polypropylene, and alkali-resistant glass TRC composites and explore the response of full scale TRC structural shapes, including angle and channel sections. Finally, a study was conducted on the connection type for large scale TRC composite structural sections in tension and compression testing.
Date Created
2017
Contributors
- Bauchmoyer, Jacob Macgregor (Author)
- Mobasher, Barzin (Thesis advisor)
- Rajan, Subramaniam D. (Committee member)
- Neithalath, Narayanan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
90 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.44267
Level of coding
minimal
Note
Masters Thesis Civil Engineering 2017
System Created
- 2017-06-01 02:05:57
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats