Effects of physical activity on sleep in sedentary adults with sleep problems
Document
Description
Physical activity is critical for optimal health and has emerged as a viable option to improve sleep. Moderate- and vigorous-intensity physical activity comparisons to improve sleep in non-exercising adults with sleep problems is limited. The purpose was to determine the effects of moderate- or vigorous-intensity exercise on sleep outcomes and peripheral skin temperature compared to a no-exercise control. The exercise intensity preference also was determined.
Eleven women (46.9±7.0 years) not participating in regular exercise and self-reporting insomnia completed a graded maximal exercise test followed by a crossover trial of three randomly assigned conditions separated by a 1-week washout. Participants performed moderate-intensity [MIC, 30 minutes, 65-70% maximum heart rate (HRmax)] or high-intensity (HIT, 20 minutes, 1-minute bouts at 90-95% HRmax alternating with 1-minute active recovery) treadmill walking or a no-exercise control (NEC) on two consecutive weekdays 4-6 hours prior to typical bed time. A dual-function wrist-worn accelerometer/temperature monitor recorded movement and skin temperature from which sleep-onset latency (SOL), sleep maintenance, sleep efficiency, total sleep time (TST), and peripheral skin temperature changes were calculated. Participants self-reported sleep outcomes weekly, enjoyment of exercise the morning after HIT and MIC, and exercise intensity preference upon completing all conditions. Mixed models analysis of variance examined differences between and within conditions controlling for demographic characteristics and habitual physical activity.
HIT resulted in up to a 90-minute TST increase on night four (448 minutes, 95% CI 422.4-474.2) compared to nights one-three. MIC nights three (43.5 minutes, 95% CI 30.4-56.6) and four (42.1 minutes 95% CI 29.0-55.2) showed nearly a 30-minute SOL worsening compared to nights one-two. No other actigraphy-measured sleep parameters differenced within or between conditions. Self-reported sleep outcomes, peripheral skin temperature change, and exercise enjoyment between conditions were similar (p>0.05). More participants preferred lower (n=3) to higher (n=1) intensity activities.
Early evening high-intensity and moderate-intensity exercise had no effect on sleep outcomes compared to a control in non-exercising adults reporting sleep complaints. Sleep benefits from HIT may require exercise on successive days. Participants indicated partiality for lower intensity exercise. More information on timing and mode of physical activity to improve sleep in this population is warranted.
Eleven women (46.9±7.0 years) not participating in regular exercise and self-reporting insomnia completed a graded maximal exercise test followed by a crossover trial of three randomly assigned conditions separated by a 1-week washout. Participants performed moderate-intensity [MIC, 30 minutes, 65-70% maximum heart rate (HRmax)] or high-intensity (HIT, 20 minutes, 1-minute bouts at 90-95% HRmax alternating with 1-minute active recovery) treadmill walking or a no-exercise control (NEC) on two consecutive weekdays 4-6 hours prior to typical bed time. A dual-function wrist-worn accelerometer/temperature monitor recorded movement and skin temperature from which sleep-onset latency (SOL), sleep maintenance, sleep efficiency, total sleep time (TST), and peripheral skin temperature changes were calculated. Participants self-reported sleep outcomes weekly, enjoyment of exercise the morning after HIT and MIC, and exercise intensity preference upon completing all conditions. Mixed models analysis of variance examined differences between and within conditions controlling for demographic characteristics and habitual physical activity.
HIT resulted in up to a 90-minute TST increase on night four (448 minutes, 95% CI 422.4-474.2) compared to nights one-three. MIC nights three (43.5 minutes, 95% CI 30.4-56.6) and four (42.1 minutes 95% CI 29.0-55.2) showed nearly a 30-minute SOL worsening compared to nights one-two. No other actigraphy-measured sleep parameters differenced within or between conditions. Self-reported sleep outcomes, peripheral skin temperature change, and exercise enjoyment between conditions were similar (p>0.05). More participants preferred lower (n=3) to higher (n=1) intensity activities.
Early evening high-intensity and moderate-intensity exercise had no effect on sleep outcomes compared to a control in non-exercising adults reporting sleep complaints. Sleep benefits from HIT may require exercise on successive days. Participants indicated partiality for lower intensity exercise. More information on timing and mode of physical activity to improve sleep in this population is warranted.