Full metadata
Title
Optimal design of experiments for dual-response systems
Description
The majority of research in experimental design has, to date, been focused on designs when there is only one type of response variable under consideration. In a decision-making process, however, relying on only one objective or criterion can lead to oversimplified, sub-optimal decisions that ignore important considerations. Incorporating multiple, and likely competing, objectives is critical during the decision-making process in order to balance the tradeoffs of all potential solutions. Consequently, the problem of constructing a design for an experiment when multiple types of responses are of interest does not have a clear answer, particularly when the response variables have different distributions. Responses with different distributions have different requirements of the design.
Computer-generated optimal designs are popular design choices for less standard scenarios where classical designs are not ideal. This work presents a new approach to experimental designs for dual-response systems. The normal, binomial, and Poisson distributions are considered for the potential responses. Using the D-criterion for the linear model and the Bayesian D-criterion for the nonlinear models, a weighted criterion is implemented in a coordinate-exchange algorithm. The designs are evaluated and compared across different weights. The sensitivity of the designs to the priors supplied in the Bayesian D-criterion is explored in the third chapter of this work.
The final section of this work presents a method for a decision-making process involving multiple objectives. There are situations where a decision-maker is interested in several optimal solutions, not just one. These types of decision processes fall into one of two scenarios: 1) wanting to identify the best N solutions to accomplish a goal or specific task, or 2) evaluating a decision based on several primary quantitative objectives along with secondary qualitative priorities. Design of experiment selection often involves the second scenario where the goal is to identify several contending solutions using the primary quantitative objectives, and then use the secondary qualitative objectives to guide the final decision. Layered Pareto Fronts can help identify a richer class of contenders to examine more closely. The method is illustrated with a supersaturated screening design example.
Computer-generated optimal designs are popular design choices for less standard scenarios where classical designs are not ideal. This work presents a new approach to experimental designs for dual-response systems. The normal, binomial, and Poisson distributions are considered for the potential responses. Using the D-criterion for the linear model and the Bayesian D-criterion for the nonlinear models, a weighted criterion is implemented in a coordinate-exchange algorithm. The designs are evaluated and compared across different weights. The sensitivity of the designs to the priors supplied in the Bayesian D-criterion is explored in the third chapter of this work.
The final section of this work presents a method for a decision-making process involving multiple objectives. There are situations where a decision-maker is interested in several optimal solutions, not just one. These types of decision processes fall into one of two scenarios: 1) wanting to identify the best N solutions to accomplish a goal or specific task, or 2) evaluating a decision based on several primary quantitative objectives along with secondary qualitative priorities. Design of experiment selection often involves the second scenario where the goal is to identify several contending solutions using the primary quantitative objectives, and then use the secondary qualitative objectives to guide the final decision. Layered Pareto Fronts can help identify a richer class of contenders to examine more closely. The method is illustrated with a supersaturated screening design example.
Date Created
2016
Contributors
- Burke, Sarah Ellen (Author)
- Montgomery, Douglas C. (Thesis advisor)
- Borror, Connie M. (Thesis advisor)
- Anderson-Cook, Christine M. (Committee member)
- Pan, Rong (Committee member)
- Silvestrini, Rachel (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xv, 137 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40249
Statement of Responsibility
by Sarah Ellen Burke
Description Source
Retrieved on Nov. 30, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 105-109)
Field of study: Industrial engineering
System Created
- 2016-10-12 02:17:50
System Modified
- 2021-08-30 01:21:36
- 3 years 3 months ago
Additional Formats