Full metadata
Title
SPSR efficient processing of socially k-nearest neighbors with spatial range filter
Description
Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users. And with rapid increase in the usage of mobile phones and wearables, social media data is being tied to spatial networks. This research document proposes an efficient technique that answers socially k-Nearest Neighbors with Spatial Range Filter. The proposed approach performs a joint search on both the social and spatial domains which radically improves the performance compared to straight forward solutions. The research document proposes a novel index that combines social and spatial indexes. In other words, graph data is stored in an organized manner to filter it based on spatial (region of interest) and social constraints (top-k closest vertices) at query time. That leads to pruning necessary paths during the social graph traversal procedure, and only returns the top-K social close venues. The research document then experimentally proves how the proposed approach outperforms existing baseline approaches by at least three times and also compare how each of our algorithms perform under various conditions on a real geo-social dataset extracted from Yelp.
Date Created
2016
Contributors
- Pasumarthy, Nitin (Author)
- Sarwat, Mohamed (Thesis advisor)
- Papotti, Paolo (Committee member)
- Sen, Arunabha (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
v, 45 pages : color illustrations, color map
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40219
Statement of Responsibility
by Nitin Pasumarthy
Description Source
Viewed on November 2, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 44-45)
Field of study: Computer science
System Created
- 2016-10-12 02:16:35
System Modified
- 2021-08-30 01:21:47
- 3 years 3 months ago
Additional Formats