Full metadata
Title
Continuous assessment in agile learning using visualizations and clustering of activity data to analyze student behavior
Description
Software engineering education today is a technologically advanced and rapidly evolving discipline. Being a discipline where students not only design but also build new technology, it is important that they receive a hands on learning experience in the form of project based courses. To maximize the learning benefit, students must conduct project-based learning activities in a consistent rhythm, or cadence. Project-based courses that are augmented with a system of frequent, formative feedback helps students constantly evaluate their progress and leads them away from a deadline driven approach to learning.
One aspect of this research is focused on evaluating the use of a tool that tracks student activity as a means of providing frequent, formative feedback. This thesis measures the impact of the tool on student compliance to the learning process. A personalized dashboard with quasi real time visual reports and notifications are provided to undergraduate and graduate software engineering students. The impact of these visual reports on compliance is measured using the log traces of dashboard activity and a survey instrument given multiple times during the course.
A second aspect of this research is the application of learning analytics to understand patterns of student compliance. This research employs unsupervised machine learning algorithms to identify unique patterns of student behavior observed in the context of a project-based course. Analyzing and labeling these unique patterns of behavior can help instructors understand typical student characteristics. Further, understanding these behavioral patterns can assist an instructor in making timely, targeted interventions. In this research, datasets comprising of student’s daily activity and graded scores from an under graduate software engineering course is utilized for the purpose of identifying unique patterns of student behavior.
One aspect of this research is focused on evaluating the use of a tool that tracks student activity as a means of providing frequent, formative feedback. This thesis measures the impact of the tool on student compliance to the learning process. A personalized dashboard with quasi real time visual reports and notifications are provided to undergraduate and graduate software engineering students. The impact of these visual reports on compliance is measured using the log traces of dashboard activity and a survey instrument given multiple times during the course.
A second aspect of this research is the application of learning analytics to understand patterns of student compliance. This research employs unsupervised machine learning algorithms to identify unique patterns of student behavior observed in the context of a project-based course. Analyzing and labeling these unique patterns of behavior can help instructors understand typical student characteristics. Further, understanding these behavioral patterns can assist an instructor in making timely, targeted interventions. In this research, datasets comprising of student’s daily activity and graded scores from an under graduate software engineering course is utilized for the purpose of identifying unique patterns of student behavior.
Date Created
2016
Contributors
- Xavier, Suhas (Author)
- Gary, Kevin A (Thesis advisor)
- Bansal, Srividya K (Committee member)
- Sohoni, Sohum (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
vii, 77 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.39407
Statement of Responsibility
by Suhas Xavier
Description Source
Viewed on August 24, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 74-77)
Field of study: Engineering
System Created
- 2016-08-01 08:00:57
System Modified
- 2021-08-30 01:22:16
- 3 years 2 months ago
Additional Formats