Full metadata
Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual maintenance and rehabilitation strategies to their road network.
The objective of the work in this study was to develop a methodology to evaluate and predict pavement roughness over the pavement service life. Unlike previous studies, a unique aspect of this work was the use of non-linear mathematical function, sigmoidal growth function, to model the IRI data and provide agencies with the information needed for decision making in asset management and funding allocation. The analysis included data from two major databases (case studies): Long Term Pavement Performance (LTPP) and the Minnesota Department of Transportation MnROAD research program. Each case study analyzed periodic IRI measurements, which were used to develop the sigmoidal models.
The analysis aimed to demonstrate several concepts; that the LTPP and MnROAD roughness data could be represented using the sigmoidal growth function, that periodic IRI measurements collected for road sections with similar characteristics could be processed to develop an IRI curve representing the pavement deterioration for this group, and that pavement deterioration using historical IRI data can provide insight on traffic loading, material, and climate effects. The results of the two case studies concluded that in general, pavement sections without drainage systems, narrower lanes, higher traffic, or measured in the outermost lane were observed to have more rapid deterioration trends than their counterparts.
Overall, this study demonstrated that the sigmoidal growth function is a viable option for roughness deterioration modeling. This research not only to demonstrated how historical roughness can be modeled, but also how the same framework could be applied to other measures of pavement performance which deteriorate in a similar manner, including distress severity, present serviceability rating, and friction loss. These sigmoidal models are regarded to provide better understanding of particular pavement network deterioration, which in turn can provide value in asset management and resource allocation planning.
- Beckley, Michelle Elizabeth (Author)
- Kaloush, Kamil (Thesis advisor)
- Underwood, Benjamin S (Committee member)
- Mamlouk, Michael S. (Committee member)
- Arizona State University (Publisher)
- 2016-06-01 08:56:27
- 2021-09-20 07:33:24
- 3 years 1 month ago