Full metadata
Title
Locality sensitive indexing for efficient high-dimensional query answering in the presence of excluded regions
Description
Similarity search in high-dimensional spaces is popular for applications like image
processing, time series, and genome data. In higher dimensions, the phenomenon of
curse of dimensionality kills the effectiveness of most of the index structures, giving
way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity
searches. In addition to range searches and k-nearest neighbor searches, there
is a need to answer negative queries formed by excluded regions, in high-dimensional
data. Though there have been a slew of variants of LSH to improve efficiency, reduce
storage, and provide better accuracies, none of the techniques are capable of
answering queries in the presence of excluded regions.
This thesis provides a novel approach to handle such negative queries. This is
achieved by creating a prefix based hierarchical index structure. First, the higher
dimensional space is projected to a lower dimension space. Then, a one-dimensional
ordering is developed, while retaining the hierarchical traits. The algorithm intelligently
prunes the irrelevant candidates while answering queries in the presence of
excluded regions. While naive LSH would need to filter out the negative query results
from the main results, the new algorithm minimizes the need to fetch the redundant
results in the first place. Experiment results show that this reduces post-processing
cost thereby reducing the query processing time.
processing, time series, and genome data. In higher dimensions, the phenomenon of
curse of dimensionality kills the effectiveness of most of the index structures, giving
way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity
searches. In addition to range searches and k-nearest neighbor searches, there
is a need to answer negative queries formed by excluded regions, in high-dimensional
data. Though there have been a slew of variants of LSH to improve efficiency, reduce
storage, and provide better accuracies, none of the techniques are capable of
answering queries in the presence of excluded regions.
This thesis provides a novel approach to handle such negative queries. This is
achieved by creating a prefix based hierarchical index structure. First, the higher
dimensional space is projected to a lower dimension space. Then, a one-dimensional
ordering is developed, while retaining the hierarchical traits. The algorithm intelligently
prunes the irrelevant candidates while answering queries in the presence of
excluded regions. While naive LSH would need to filter out the negative query results
from the main results, the new algorithm minimizes the need to fetch the redundant
results in the first place. Experiment results show that this reduces post-processing
cost thereby reducing the query processing time.
Date Created
2016
Contributors
- Bhat, Aneesha (Author)
- Candan, Kasim Selcuk (Thesis advisor)
- Davulcu, Hasan (Committee member)
- Sapino, Maria Luisa (Committee member)
- Sarwat, Mohamed (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x, 75 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.36534
Statement of Responsibility
by Aneesha Bhat
Description Source
Viewed on March 28, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 71-75)
Field of study: Computer science
System Created
- 2016-02-01 07:15:10
System Modified
- 2021-08-30 01:25:13
- 3 years 2 months ago
Additional Formats