Full metadata
Title
Self-configuring and self-adaptive environment control systems for buildings
Description
Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system self calibrating and self learning abilities.
For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting.
For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control.
The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments.
For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting.
For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control.
The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments.
Date Created
2015
Contributors
- Wang, Yuan (Author)
- Dasgupta, Partha (Thesis advisor)
- Davulcu, Hasan (Committee member)
- Huang, Dijiang (Committee member)
- Reddy, T. Agami (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
ix, 89 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.36025
Statement of Responsibility
by Yuan Wang
Description Source
Viewed on January 11, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references (pages 81-85)
Field of study: Computer science
System Created
- 2015-12-01 07:04:35
System Modified
- 2021-08-30 01:26:26
- 3 years 4 months ago
Additional Formats