Full metadata
Title
Adaptive learning of neural activity during deep brain stimulation
Description
Parkinson's disease is a neurodegenerative condition diagnosed on patients with
clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated
number of patients living with Parkinson's disease around the world is seven
to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor
signs of Parkinson's disease patients. It is an advanced surgical technique that is used
when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation.
This work proposes a behavior recognition model for patients with Parkinson's
disease. In particular, an adaptive learning method is proposed to classify behavioral
tasks of Parkinson's disease patients using local field potential and electrocorticography
signals that are collected during DBS implantation surgeries. Unique patterns
exhibited between these signals in a matched feature space would lead to distinction
between motor and language behavioral tasks. Unique features are first extracted
from deep brain signals in the time-frequency space using the matching pursuit decomposition
algorithm. The Dirichlet process Gaussian mixture model uses the extracted
features to cluster the different behavioral signal patterns, without training or
any prior information. The performance of the method is then compared with other
machine learning methods and the advantages of each method is discussed under
different conditions.
clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated
number of patients living with Parkinson's disease around the world is seven
to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor
signs of Parkinson's disease patients. It is an advanced surgical technique that is used
when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation.
This work proposes a behavior recognition model for patients with Parkinson's
disease. In particular, an adaptive learning method is proposed to classify behavioral
tasks of Parkinson's disease patients using local field potential and electrocorticography
signals that are collected during DBS implantation surgeries. Unique patterns
exhibited between these signals in a matched feature space would lead to distinction
between motor and language behavioral tasks. Unique features are first extracted
from deep brain signals in the time-frequency space using the matching pursuit decomposition
algorithm. The Dirichlet process Gaussian mixture model uses the extracted
features to cluster the different behavioral signal patterns, without training or
any prior information. The performance of the method is then compared with other
machine learning methods and the advantages of each method is discussed under
different conditions.
Date Created
2015
Contributors
- Dutta, Arindam (Author)
- Papandreou-Suppappola, Antonia (Thesis advisor)
- Holbert, Keith E. (Committee member)
- Bliss, Daniel W. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 46 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29727
Statement of Responsibility
by Arindam Dutta
Description Source
Viewed on June 23, 2015
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2015
bibliography
Includes bibliographical references (p. 37-39)
Field of study: Electrical engineering
System Created
- 2015-06-01 08:06:06
System Modified
- 2021-08-30 01:29:51
- 3 years 2 months ago
Additional Formats