Full metadata
Title
Multilevel multiple imputation: an examination of competing methods
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
Date Created
2015
Contributors
- Mistler, Stephen (Author)
- Enders, Craig K. (Thesis advisor)
- Aiken, Leona (Committee member)
- Levy, Roy (Committee member)
- West, Stephen G. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 195 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29655
Statement of Responsibility
by Stephen Andrew Mistler
Description Source
Retrieved on June 24, 2015
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references (p. 163-167)
Field of study: Psychology
System Created
- 2015-06-01 08:04:15
System Modified
- 2021-08-30 01:30:17
- 3 years 3 months ago
Additional Formats