Full metadata
Title
Model based automotive system integration: fuel cell vehicle hardware-in-the-loop
Description
Over the past decade, proton exchange membrane fuel cells have gained much momentum due to their environmental advantages and commutability over internal combustion engines. To carefully study the dynamic behavior of the fuel cells, a dynamic test stand to validate their performance is necessary. Much attention has been given to HiL (Hardware-in-loop) testing of the fuel cells, where the simulated FC model is replaced by a real hardware. This thesis presents an economical approach for closed loop HiL testing of PEM fuel cell. After evaluating the performance of the standalone fuel cell system, a fuel cell hybrid electric vehicle model was developed by incorporating a battery system. The FCHEV was tested with two different control strategies, viz. load following and thermostatic.
The study was done to determine the dynamic behavior of the FC when exposed to real-world drive cycles. Different parameters associated with the efficiency of the fuel cell were monitored. An electronic DC load was used to draw current from the FC. The DC load was controlled in real time with a NI PXIe-1071 controller chassis incorporated with NI PXI-6722 and NI PXIe-6341 controllers. The closed loop feedback was obtained with the temperatures from two surface mount thermocouples on the FC. The temperature of these thermocouples follows the curve of the FC core temperature, which is measured with a thermocouple located inside the fuel cell system. This indicates successful implementation of the closed loop feedback. The results show that the FC was able to satisfy the required power when continuous shifting load was present, but there was a discrepancy between the power requirements at times of peak acceleration and also at constant loads when ran for a longer time. It has also been found that further research is required to fully understand the transient behavior of the fuel cell temperature distribution in relation to their use in automotive industry. In the experimental runs involving the FCHEV model with different control strategies, it was noticed that the fuel cell response to transient loads improved and the hydrogen consumption of the fuel cell drastically decreased.
The study was done to determine the dynamic behavior of the FC when exposed to real-world drive cycles. Different parameters associated with the efficiency of the fuel cell were monitored. An electronic DC load was used to draw current from the FC. The DC load was controlled in real time with a NI PXIe-1071 controller chassis incorporated with NI PXI-6722 and NI PXIe-6341 controllers. The closed loop feedback was obtained with the temperatures from two surface mount thermocouples on the FC. The temperature of these thermocouples follows the curve of the FC core temperature, which is measured with a thermocouple located inside the fuel cell system. This indicates successful implementation of the closed loop feedback. The results show that the FC was able to satisfy the required power when continuous shifting load was present, but there was a discrepancy between the power requirements at times of peak acceleration and also at constant loads when ran for a longer time. It has also been found that further research is required to fully understand the transient behavior of the fuel cell temperature distribution in relation to their use in automotive industry. In the experimental runs involving the FCHEV model with different control strategies, it was noticed that the fuel cell response to transient loads improved and the hydrogen consumption of the fuel cell drastically decreased.
Date Created
2014
Contributors
- Goyal, Govind (Author)
- Ra'ouf Mayyas, Abdel (Thesis advisor)
- Madakannan, Arunachalanadar (Committee member)
- Dalrymple, Odesma (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 89 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.25948
Statement of Responsibility
by Govind Goyal
Description Source
Viewed on December 19, 2014
Level of coding
full
Note
thesis
Partial requirement for: M.S.Tech, Arizona State University, 2014
bibliography
Includes bibliographical references (p. 79-83)
Field of study: Engineering
System Created
- 2014-10-01 08:03:47
System Modified
- 2021-08-30 01:32:39
- 3 years 3 months ago
Additional Formats