Description
This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event

This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event streams using temporal database operators. Temporal databases and temporal query languages have been a subject of research for more than 30 years and are a natural fit for expressing queries that involve a temporal dimension. However, operators developed in this context cannot be directly applied to event streams. The research extends a preexisting relational framework for event stream processing to support temporal queries. The language features and formal semantic extensions to extend the relational framework are identified. The extended framework supports continuous, step-wise evaluation of temporal queries. The incremental evaluation of TEQL operators is formalized to avoid re-computation of previous results. The research includes the development of a prototype that supports the integrated event and temporal query processing framework, with support for incremental evaluation and materialization of intermediate results. TEQL enables reporting temporal data in the output, direct specification of conditions over timestamps, and specification of temporal relational operators. Through the integration of temporal database operators with event languages, a new class of temporal queries is made possible for querying event streams. New features include semantic aggregation, extraction of temporal patterns using set operators, and a more accurate specification of event co-occurrence.
Reuse Permissions
  • Downloads
    PDF (1.7 MB)

    Details

    Title
    • Application of a temporal database framework for processing event queries
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2012
    • bibliography
      Includes bibliographical refernces (p. 174-178)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Foruhar Ali Shiva

    Machine-readable links