Description
Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be

Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which primarily acts through nitric oxide (NO) and cyclooxygenase (COX)-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors (EDHFs). Very few studies have been conducted on small resistance systemic arteries from birds. The hypothesis was that because birds have naturally high glucose and free fatty acid concentrations, ACh-induced vasodilation of isolated arteries from mourning doves (Zenaida macroura) would be independent of endothelial-derived factors and resistant to high glucose-mediated vascular dysfunction. Small resistance mesenteric and cranial tibial (c. tibial) arteries were pre-constricted to 50% of resting inner diameter with phenyleprine then exposed to increasing doses of ACh (10-9 to 10-5 μM) or the NO donor, sodium nitroprusside (SNP; 10-12 to 10-3 μM). For both vessel beds, ACh-induced vasodilation occurred mainly through the activation of potassium channels, whereas vasodilation of mesenteric arteries additionally occurred through COX. Although arteries from both vessel beds fully dilated with exposure to sodium nitroprusside, ACh-mediated vasodilation was independent of NO. To examine the effect of high glucose on endothelium-dependent vasodilation, ACh dose response curves were conducted following exposure of isolated c. tibial arteries to either a control solution (20mM glucose) or high glucose (30mM). ACh-induced vasodilation was significantly impaired (p = 0.013) when exposed to high glucose, but normalized in subsequent vessels with pre-exposure to the superoxide dismutase mimetic tiron (10 mM). Superoxide concentrations were likewise significantly increased (p = 0.0072) following exposure to high glucose. These findings indicate that dove arteries do not appear to have endogenous mechanisms to counteract the deleterious effects of oxidative stress. Additional studies are required to assess whether endogenous mechanisms exist to protect avian vascular reactivity from systemic hyperglycemia.
Reuse Permissions
  • Downloads
    PDF (660 KB)

    Details

    Title
    • Characterization of acetylcholine-mediated vasodilation in mourning dove arteries under normoglycemic and hyperglycemic conditions
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2012
    • bibliography
      Includes bibliographical references (p. 58-66)
    • Field of study: Nutrition

    Citation and reuse

    Statement of Responsibility

    by Catherine Jarrett

    Machine-readable links