Full metadata
Title
Comparative and experimental investigations of cranial robusticity in mid-Pleistocene hominins
Description
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.
Date Created
2012
Contributors
- Copes, Lynn (Author)
- Kimbel, William H. (Thesis advisor)
- Schwartz, Gary T (Committee member)
- Spencer, Mark A. (Committee member)
- Ravosa, Matthew J. (Committee member)
- Arizona State University (Publisher)
Topical Subject
- Physical anthropology
- Evolution & development
- Physiology
- Allometry
- bone physiology
- experimental animal models
- Homo erectus
- skeletal robusticity
- Craniology
- Homo erectus--Morphology.
- Homo erectus
- Homo erectus--Physiology.
- Homo erectus
- Primates--Morphology.
- Primates
- Primates--Physiology.
- Skull--Physiology.
- Skull
Resource Type
Extent
xl, 645 p. : ill. (some col.), maps
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.14725
Statement of Responsibility
by Lynn Copes
Description Source
Retrieved on April 2, 2013
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2012
bibliography
Includes bibliographical references (p. 564-606)
Field of study: Anthropology
System Created
- 2012-08-24 06:20:48
System Modified
- 2021-08-30 01:47:40
- 3 years 4 months ago
Additional Formats