Description
This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor arrays. The IC consists of a low noise potentiostat, and associated 9bit current-steering DAC for sensor stimulus, followed by the first order nested chopped £U£G ADC. The conductometric sensor uses a current driven approach for extracting conductance of the sensor depending on gas concentration. The amperometric sensor uses a potentiostat to apply constant voltage to the sensors and an I/V converter to measure current out of the sensor. The core area for the AFE is 2.65x0.95 mm2. The proposed system achieves 91 dB SNR at 1.32 mW quiescent power consumption per channel. With digital offset storage and nested chopping, the readout chain achieves 500 fÝV input referred offset.
Download count: 3
Details
Title
- A CMOS analog front-end IC for gas sensors
Contributors
- Kim, Hyun-Tae (Author)
- Bakkaloglu, Bertan (Thesis advisor)
- Vermeire, Bert (Committee member)
- Spanias, Andreas (Committee member)
- Thornton, Trevor (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2011
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2011
- bibliographyIncludes bibliographical references (p. 184-188)
- Field of study: Electrical engineering
Citation and reuse
Statement of Responsibility
by Hyun Tae Kim