Description
This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions

This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions between DNA bases and nucleosides. Previous STM data suggested that an STM tip could recognize single base pairs through an electronic interaction after a functionalized tip made contact with a self assembled monolayer then was retracted. The conducting AFM was employed in order to understand the mechanical interactions of such a system and how they were affecting electrical responses. The results from the conducting AFM showed that the scanning probe system was measuring multiple base-pair interactions, and thus did not have single base resolution. Further, results showed that the conductance between a single base-nucleoside pair is below the detection limit of a potential commercial sequencing device. The second section describes the modifications of a scanning probe microscope in order to study the conductance of single organic molecules under illumination. Modifications to the scanning probe microscope are described as are the control and data analysis software for an experiment testing the single molecule conductance of an organic molecule under illumination. This instrument was then tested using a novel charge-separation molecule, which is being considered for its potential photovoltaic properties. The experiments showed that the instrumentation is capable of detecting differences in conductance upon laser illumination of the molecule on a transparent conductive surface. The third section describes measurements using the illuminated CAFM, as well as the design and construction of an illuminated mercury drop electrode apparatus. Both instruments were tested by attempting to observe photovoltaic behavior in a novel self-organized film of the charge-separation molecules mentioned in the previous paragraph. Results and calculations show that the conducting AFM is not a useful tool in the examination of these organic photovoltaics, while the mercury drop apparatus measured photovoltaic effects in the film. Although photovoltaic effects were measurable with the mercury drop electrode, it was found that the film exhibited very low photon-to-electron conversion efficiency (IPCE).
Reuse Permissions
  • Downloads
    PDF (4.8 MB)

    Details

    Title
    • Instrumentation for molecular electronics device research
    Contributors
    Date Created
    2010
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2010
    • Field of study: Physics

    Citation and reuse

    Statement of Responsibility

    by Ashley Ann Kibel

    Machine-readable links