Full metadata
Title
Cognitive Impact of Dietary Phytoestrogens
Description
There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as heart disease. Thus, in order to achieve a successful and clinically relevant long-term hormone therapy option, it is optimal to find an estrogen therapy regimen that is selective to its target tissue. Recently, phytoestrogens have been found to exert selective, beneficial effects on cognition and brain. For example, genistein and diadzein produce neuroprotective effects in cognitive brain regions (Zhao, Chen, & Diaz Brinton, 2002). The purpose of this study was threefold: 1) to examine the cognitive impact of phytoestrogens in young ovariectomized rats, 2) to replicate the dose effects found in the Luine study (Luine et al., 2006), while controlling for manufacturer differences, and 3) to assess if the rodent diet used in our laboratory has an estrogenic-like cognitive impact.The current findings suggest that, at least for object memory, diets containing varying amounts of phytoestrogens can alter cognition, with diets containing high amounts of phytoestrogens showing potential benefits to this type of memory.
Date Created
2013-05
Contributors
- Whitton, Elizabeth Nicole (Author)
- Bimonte-Nelson, Heather (Thesis director)
- Presson, Clark (Committee member)
- Baxter, Leslie (Committee member)
- Barrett, The Honors College (Contributor)
- Department of Psychology (Contributor)
Topical Subject
Resource Type
Extent
28 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2012-2013
Handle
https://hdl.handle.net/2286/R.I.17140
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 2 months ago
Additional Formats