Full metadata
Title
Localization of the Organic Cation Transporters (OCT) and the Quantification of Organic Cation Transport and Serotonergic Gene Transcription in the Rat Brain
Description
The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.
Date Created
2013-05
Contributors
- Tompkins, Heather Camila (Author)
- Orchinik, Miles (Thesis director)
- Neisewander, Janet (Committee member)
- Talboom, Joshua (Committee member)
- Barrett, The Honors College (Contributor)
- School of Life Sciences (Contributor)
Topical Subject
Resource Type
Extent
37 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2012-2013
Handle
https://hdl.handle.net/2286/R.I.17143
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats