Full metadata
Title
Direct nose-to-brain delivery of targeted polymeric nanoparticles
Description
There is growing interest in intranasal delivery of therapeutics because of direct nose-to-brain pathways which are able to bypass biological barriers, such as the blood-brain barrier (BBB), that have historically limited our ability to effectively deliver drugs to the central nervous system (CNS). Since these pathways were first discovered, there has been significant preclinical success in delivering a wide range of therapeutics to the CNS with additional growing efforts to further improve delivery through nanoparticle drug delivery systems. Here we sought to improve intranasal delivery of DiR, a lipophilic small molecule cyanine dye, to the CNS by surface modifying a poly (lactic-co-glycolic acid) (PLGA) nanoparticle with a short peptide derived from the rabies virus glycoprotein (RVG). The specific aims of this thesis were to evaluate administration route-dependent delivery of RVG nanoparticles to the CNS, and to identify anatomical transport pathways by which nanoparticles facilitate transport of small lipophilic molecules. Route-dependent delivery kinetics and distribution were studied by administering DiR loaded nanoparticles to healthy Balb/C mice. Specific tissues were homogenized and the fluorescent intensity of DiR was measured and compared to control tissue spiked with known amounts of dye. While bioavailability of DiR after intranasal administration was near 0% with minimal exposure to peripheral organs, quick and efficient delivery to the CNS was still observed. CNS delivery after intranasal administration was rapid with peak concentrations at 30 minutes post-administration followed by broad clearance by 2 hours. Regional differences of delivery of DiR to the CNS demonstrated engagement of direct nose-to-brain transport pathways with high delivery being observed to the olfactory bulb, brain stem, and trigeminal nerve. RVG modification however presented only modest targeting benefits. In conclusion, the biodistribution of DiR after intranasal administration of DiR loaded nanoparticles showed high potential for the direct nose-to-brain delivery while limiting peripheral exposure of lipophilic small molecule drugs.
Date Created
2016-05
Contributors
- Chung, Eugene Paul (Author)
- Kodibagkar, Vikram (Thesis director)
- Sirianni, Rachael (Committee member)
- School of Life Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
42 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2015-2016
Handle
https://hdl.handle.net/2286/R.I.37514
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats