Full metadata
Title
Wet NanoBonding of Semiconducting Surfaces Optimized via Surface Energy Modification using Three Liquid Contact Angle Analysis as a Metrology
Description
Semiconductor wafers are analyzed and their total surface energy γT is measured in three components according to the van Oss theory: (1) γLW, surface energy due to Lifshitz-van der Waals forces or dipole interactions, (2) γ+, surface energy due to interactions with electron donors, and (3) γ–, surface energy due to interactions with electron acceptors. Surface energy is measured via Three Liquid Contact Angle Analysis (3LCAA), a method of contact angle measurement using the sessile drop technique and three liquids: water, glycerin, and α-bromonaphthalene. This research optimizes the experimental methods of 3LCAA, proving that the technique produces reproducible measurements for surface energy on a variety of surfaces. Wafer surfaces are prepared via thermal oxidation, rapid thermal oxidation, ion beam oxidation, rapid thermal annealing, hydrofluoric acid etching, the RCA clean, the Herbots-Atluri (H-A) process, and the dry and wet anneals used for Dry and Wet NanoBonding™, respectively.
NanoBonding™ is a process for growing molecular bonds between semiconducting surfaces to create a hermetic seal. NanoBonding™ prevents fluid percolation, protecting integrated electronic sensors from corrosive mobile ion species such as sodium. This can extend the lifetime of marine sensors and glucose sensors from less than one week to over two years, dramatically reducing costs and improving quality of life for diabetic patients. Surface energy measurement is critical to understanding and optimizing NanoBonding™. Surface energies are modified through variations on the H-A process, and measured via 3LCAA. The majority of this research focuses on silicon oxide surfaces.
This is the first quantitative measurement of gallium arsenide surface energy in three components. GaAs is a III-V semiconductor with potential commercial use in transistors, but its oxide layer slowly evaporates over time. In subsequent research, 3LCAA may prove key to developing a stable GaAs oxide layer.
NanoBonding™ is a process for growing molecular bonds between semiconducting surfaces to create a hermetic seal. NanoBonding™ prevents fluid percolation, protecting integrated electronic sensors from corrosive mobile ion species such as sodium. This can extend the lifetime of marine sensors and glucose sensors from less than one week to over two years, dramatically reducing costs and improving quality of life for diabetic patients. Surface energy measurement is critical to understanding and optimizing NanoBonding™. Surface energies are modified through variations on the H-A process, and measured via 3LCAA. The majority of this research focuses on silicon oxide surfaces.
This is the first quantitative measurement of gallium arsenide surface energy in three components. GaAs is a III-V semiconductor with potential commercial use in transistors, but its oxide layer slowly evaporates over time. In subsequent research, 3LCAA may prove key to developing a stable GaAs oxide layer.
Date Created
2016-05
Contributors
- Davis, Ender (Author)
- Herbots, Nicole (Thesis director)
- Culbertson, Robert (Committee member)
- Watson, Clarizza (Committee member)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
62 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2015-2016
Handle
https://hdl.handle.net/2286/R.I.38988
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-07-16 10:38:41
- 3 years 6 months ago
Additional Formats