Full metadata
Title
Thermal Energy Storage Using Organic and Metallic Phase Change Materials
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
Date Created
2016-12
Contributors
- Kocher, Jordan Daniel (Author)
- Wang, Robert (Thesis director)
- Phelan, Patrick (Committee member)
- Mechanical and Aerospace Engineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
75 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.40039
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats