Full metadata
Title
Stabilization of Zeolite Particles on Microporous Support Membranes with Spin Coating Method for Thin Film Nanocomposite Membranes
Description
Even though access to purified water has improved, there are still many people and locations that do not have this convenience. Approximately 1.2 billion people lack access to safe drinking water and 2.6 billion people have little or no sanitation. Furthermore, breakthroughs in water purification technology are essential to combat these issues. While there are several approaches to water purification, membrane processes are widely used based on their numerous advantages, including high operating temperature and low energy input. In essence, membranes do not require chemical additives, thermal inputs, or regeneration of spent media. The spin coating procedure was used to make a total of 94 membrane samples by adjusting the following variables: membrane support, membrane wetting, solvent, polyacrylonitrile (PAN) content, water contant, Linde Type A (LTA) zeolite content, and the rotations per minute (RPM) of the spin coater. Parameters that were held constant include PAN for the permeable dispersion layer, LTA zeolites as the inorganic filler material, and a spin time of 30 seconds for the spin coater. There were key findings in both the preliminary and core data sets. From the preliminary membrane samples 1 \u2014 40, a baseline was established to use for the core data: polysulfone (PSf) support, 1 \u2014 3% PAN content, and 1 \u2014 3% LTA zeolite content. Flux analysis revealed many inconsistencies in groups 1 \u2014 13 such as unreasonably high error bars (+50%), flow rates that were near zero or extremely high (+15,000 L hr-1 m-2), and lack of a clear trend for membrane specifications. Membranes with a high degree of polymer \u2014 zeolite aggregation on the surface had very low flux values. A higher flux of 4,700 L hr-1 m-2 was correlated to gap and hole formation on the membrane surface. It was shown in group 7 that an increasing degree of surface defects corresponded to an increasing flux of 17,000 L hr-1 m-2. Although the target flux for a defect \u2014 free membrane lies between 500 \u2014 4,000 L hr-1 m-2, there were not any groups with flux values in this range. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis revealed that the observed group similarities could not be attributed to individual membrane specifications. However, this data showed chemical fingerprint overlap across all groups, which were synthesized with varying quantities of the same chemicals. Analysis of flux data, SEM images, and ATR-FTIR data all suggest that the spin coating procedure leads to inconsistent results. Although the spin coater provides flexibility in user control, its advantages are outweighed by the limited control of surface uniformity, zeolite dispersion, and defect formation. It has been shown that the spin coating process is not compatible with the formation of a uniform polymer \u2014 zeolite layer in these experiments.
Date Created
2016-12
Contributors
- Maltagliati, Alexander Justin (Author)
- Lind, Mary Laura (Thesis director)
- Durgun, Pinar Cay (Committee member)
- Chemical Engineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
36 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.41038
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats