Full metadata
Title
Expression and Purification of Viral Like Particles for Vaccines and Structural Analysis
Description
Succinylcholine-induced apnea is a common problem in pre-hospital medicine that affects 1/1800 patients who undergo rapid sequence intubation. Succinylcholine is an anesthetic that mimics the neurotransmitter, acetylcholine. It binds to cholinergic receptors, blocking acetylcholine access, and causes paralysis for (normally) only a short time. Butyrylcholinesterase, which is responsible for succinylcholine hydrolysis, is deficient in a small percentage of the population. Previous studies have shown that wild-type butyrylcholinesterase (BChE) can be produced in transient-expression Nicotiana benthamiana, and can reverse the effects of succinylcholine induced apnea through enzyme replacement therapy. The wild type enzyme is also capable of irreversibly binding and inactivating organophosphorus nerve agents and pesticides, and has also exhibited cocaine hydrolase activity. Super cocaine-hydrolyzing BChE mutants, which exceed 2000 times the catalytic capability of the wild-type, have been optimized and expressed in N. benthamiana. The purpose of this study was to determine whether these mutants also hydrolyze succinylcholine with improved efficiency. Variant 3 and Variant 4 exhibited catalytic efficiencies of 2.08 x 106 M-1 min-1 and 3.48 x 106 M-1 min-1, respectively, against their preferred substrate, butyrylthiocholine, in the Ellman assay. The wild-type plant-expressed BChE did exhibit hydrolysis of succinylcholine, as we had previously determined; however, neither Variant 3 nor Variant 4 demonstrated the ability to hydrolyze succinylcholine in our particular assay. Therefore, N. benthamiana-expressed Variant 3 and Variant 4 may not succeed as a dual treatment against cocaine toxicity and prolonged succinylcholine-induces paralysis.
Date Created
2017-05
Contributors
- Scott, Boston (Author)
- Mor, Tsafrir (Thesis director)
- Mason, Hugh (Committee member)
- Kamzina, Aigerim (Committee member)
- Barrett, The Honors College (Contributor)
Resource Type
Extent
30 pages
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.45291
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-07-15 10:18:27
- 3 years 4 months ago
Additional Formats