Full metadata
Title
Low Removal of As (V) and Cr (VI) by POU Devices Until Enabled with Selective Ion Exchange Media
Description
Consumers purchase point-of-use (POU) devices to further improve the quality of water provided by the tap. As awareness increases of harmful contaminants, an emerging market of advanced POU with claims of removing beyond what a typical activated carbon filter is capable of, such as heavy metals. This research compares four commercially available pitcher filters; two that claim to remove arsenic and hexavalent chromium and two without such claims. Arsenate (As (V)) and hexavalent chromium (Cr (VI)) co-occur in natural geologic formations and are known to have harmful effects on humans when ingested. Pitcher filters Epic Water Filter and Aquagear had claims of removing both As (V) and Cr (VI) up to 99% with a capacity of nearly 200 gallons. In contrast, pitcher filters Brita and Pur had no claims for removal of As(V) and Cr(VI) with a 40-gallon lifespan. A series of experiments were conducted to first determine the efficiency of each filter, then to add the ability or improve removal of As(V) and Cr(VI) in one filter for future design implementations. Experiment 1 was conducted by treating 100 gallons of spiked tap water (50 ppb for As (V) and 100 ppb for Cr (VI)) with each filter. All four pitcher filters showed low performance, resulting in Pur with the lowest removal percentage of 2% and Aquagear with the highest percentage 16% for As (V). For Cr (VI) Pur performed the worst with a removal of 5% and Brita had the best performance of 15%. The functionality of Brita was improved by embedding a selective ion exchange media, which when nanotized successfully removed Cr (VI) in previous studies. The optimal mass of resin to add to the pitcher was experimentally determined as 18.9 grams through Experiment 2. Finally, Experiment 3 compared an alternative placement of the resin material using the same 18.9 grams. The performance in Experiment 3 was significantly worse than Experiment 2. The final recommendation for future design implementation was to add 18.9 grams of SIR-700 resin below the filter media for optimum performance. Overall, the results demonstrate the limited removal of As(V) and Cr(VI) by the four commercial pitcher filters and show that by adding selective ion exchange media, the POUs can be nano-enabled to effectively remove As(V) and Cr(VI) from water.
Date Created
2018-05
Contributors
- Dietrich, Lisa Keri (Author)
- Westerhoff, Paul (Thesis director)
- Perreault, Francois (Committee member)
- Civil, Environmental and Sustainable Engineering Program (Contributor)
- School of Sustainability (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
19 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2017-2018
Handle
https://hdl.handle.net/2286/R.I.48129
Level of coding
minimal
Cataloging Standards
System Created
- 2018-04-21 12:22:16
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats