133286-Thumbnail Image.png
Description
This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create

This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a cane reed, has less variation in quality, and costs less per year than cane reeds. For low-income students in particular, the cost of purchasing cane oboe reeds ($500-$2,000 per year) is simply not feasible. This project was designed to allow oboe to be a more affordable option for all students. Money should not be a factor that limits whether or a not a child is able to explore their interests. The process used to create the synthetic reed prototype involves cold-extrusion of high-density polyethylene in order to induce orientation in the polymer to replicate the uniaxial orientation of fibrous cane. After successful cold-extrusion of a high-density polyethylene (HDPE) cylinder, the sample was made into a reed by following standard reedmaking procedures. Then, the HDPE reed and a cane reed were quantitatively tested for various qualities, including flexural modulus, hardness, and free vibration frequency. The results from the design project are promising and show a successful proof of concept. The first prototype of an oriented HDPE reed demonstrates characteristics of a cane reed. The areas that need the most improvement are the flexural modulus and the stability of the higher overtones, but these areas can be improved with further development of the cold-extrusion process. The second part of this thesis is a survey and analysis focusing on the qualitative comparison of synthetic and cane oboe reeds. The study can be used in the future to refine the design of synthetic reeds, more specifically the cold-extruded high-density polyethylene student oboe reed I designed, to best replicate a cane reed. Rather than approaching this study from a purely engineering mindset, I brought in my own experience as an oboist. Therefore, the opinions of oboists who have a wide range of experience are considered in the survey. A panel of five oboists participated in the survey. They provided their opinion on various aspects of the five reeds, including vibrancy, response, stability, resistance, tone, and overall quality. Each of these metrics are rated on a scale from one to five, from unacceptable to performance quality. According to the survey, a participant's personal, hand-made cane reed is overall the most preferred option. My prototype HDPE student reed must be improved in many areas in order to rank near the other four reeds. However, its vibrancy and resistance already rival that of a Jones student reed. As this is just the first prototype, that is a significant accomplishment. With further refinement of the cold-extrusion and reedmaking method, the other areas of the HDPE reed may be improved, and the reed may eventually compete with the existing synthetic and cane reeds on the market.
4.53 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Design and Testing of Cold-Extruded High-Density Polyethylene for Student Oboe Reeds and A Qualitative Comparison of Synthetic and Cane Oboe Reeds
Contributors
Date Created
2018-05
Resource Type
  • Text
  • Machine-readable links