131582-Thumbnail Image.png
Description
Analyzing human DNA sequence data allows researchers to identify variants associated with disease, reconstruct the demographic histories of human populations, and further understand the structure and function of the genome. Identifying variants in whole genome sequences is a crucial bioinformatics

Analyzing human DNA sequence data allows researchers to identify variants associated with disease, reconstruct the demographic histories of human populations, and further understand the structure and function of the genome. Identifying variants in whole genome sequences is a crucial bioinformatics step in sequence data processing and can be performed using multiple approaches. To investigate the consistency between different bioinformatics methods, we compared the accuracy and sensitivity of two genotyping strategies, joint variant calling and single-sample variant calling. Autosomal and sex chromosome variant call sets were produced by joint and single-sample calling variants for 10 female individuals. The accuracy of variant calls was assessed using SNP array genotype data collected from each individual. To compare the ability of joint and single-sample calling to capture low-frequency variants, folded site frequency spectra were constructed from variant call sets. To investigate the potential for these different variant calling methods to impact downstream analyses, we estimated nucleotide diversity for call sets produced using each approach. We found that while both methods were equally accurate when validated by SNP array sites, single-sample calling identified a greater number of singletons. However, estimates of nucleotide diversity were robust to these differences in the site frequency spectrum between call sets. Our results suggest that despite single-sample calling’s greater sensitivity for low-frequency variants, the differences between approaches have a minimal effect on downstream analyses. While joint calling may be a more efficient approach for genotyping many samples, in situations that preclude large sample sizes, our study suggests that single-sample calling is a suitable alternative.
333.5 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 1

Details

Title
  • Evaluating variant calling best practices
Contributors
Date Created
2020-05
Resource Type
  • Text
  • Machine-readable links