Full metadata
Title
Characterization of the physiological fluid shear response of the foodborne pathogen Salmonella enterica serovar Enteritidis
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
Date Created
2020-05
Contributors
- Koroli, Sara (Author)
- Nickerson, Cheryl (Thesis director)
- Barrila, Jennifer (Committee member)
- Ott, C. Mark (Committee member)
- School of Life Sciences (Contributor)
- School of Molecular Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
14 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2019-2020
Handle
https://hdl.handle.net/2286/R.I.56435
Level of coding
minimal
Cataloging Standards
System Created
- 2020-04-18 12:02:42
System Modified
- 2021-08-11 04:09:57
- 3 years 2 months ago
Additional Formats